17 research outputs found

    Contribution au développement de tags chipless et des capteurs à codage dans le domaine temporel

    Get PDF
    La RFID sans puce, en raison du très faible coût des tags, a ouvert une nouvelle voie pour les systèmes d'identification. Les étiquettes RFID sans puce fonctionnant dans le domaine temporel ont l'avantage d'être compatibles avec de grandes distances de lecture, de l'ordre de quelques mètres, et de pouvoir fonctionner dans les bandes de fréquence ISM. Cependant, les tags de ce type développés jusqu'à lors n'offraient qu'une faible capacité de codage. Cette thèse propose une nouvelle méthode pour augmenter la capacité de codage des tags fonctionnant dans le domaine temporel en utilisant des C-sections, c'est-à-dire des lignes de transmission repliées de manière à avoir des zones fortement couplées, ce qui leur donne un caractère dispersif. Une autre approche basée sur une technique multi-couches a également été introduite de façon à augmenter considérablement la capacité de codage. Pour terminer, la preuve de concept d'un tag-capteur d'humidité, basé sur l'utilisation de nano fils de silicium, est également présentée.Chipless RFID tags, owing to their low cost, have opened a new way to the identification systems. Chipless RFID tags operating in the time domain have the advantage of being compatible with large reading distances of the order of a few meters, and also can operate in the ISM frequency bands. However, time domain tags developed until now offer poor coding capacity. This thesis proposes a new method to increase the coding capacity of tags operating in time domain by using C-sections, i.e. the transmission lines are folded so as to have tightly coupled zones that give them a dispersive nature. Another approach based on a multi-layer technique was also introduced, in order to increase the coding capacity considerably. Finally, the proof of concept of a humidity sensor tag based on silicon nanowires is also presented.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Contribution au développement de tags chipless et des capteurs à codage dans le domaine temporel

    No full text
    Chipless RFID tags, owing to their low cost, have opened a new way to the identification systems. Chipless RFID tags operating in the time domain have the advantage of being compatible with large reading distances of the order of a few meters, and also can operate in the ISM frequency bands. However, time domain tags developed until now offer poor coding capacity. This thesis proposes a new method to increase the coding capacity of tags operating in time domain by using C-sections, i.e. the transmission lines are folded so as to have tightly coupled zones that give them a dispersive nature. Another approach based on a multi-layer technique was also introduced, in order to increase the coding capacity considerably. Finally, the proof of concept of a humidity sensor tag based on silicon nanowires is also presented.La RFID sans puce, en raison du très faible coût des tags, a ouvert une nouvelle voie pour les systèmes d'identification. Les étiquettes RFID sans puce fonctionnant dans le domaine temporel ont l'avantage d'être compatibles avec de grandes distances de lecture, de l'ordre de quelques mètres, et de pouvoir fonctionner dans les bandes de fréquence ISM. Cependant, les tags de ce type développés jusqu'à lors n'offraient qu'une faible capacité de codage. Cette thèse propose une nouvelle méthode pour augmenter la capacité de codage des tags fonctionnant dans le domaine temporel en utilisant des C-sections, c'est-à-dire des lignes de transmission repliées de manière à avoir des zones fortement couplées, ce qui leur donne un caractère dispersif. Une autre approche basée sur une technique multi-couches a également été introduite de façon à augmenter considérablement la capacité de codage. Pour terminer, la preuve de concept d'un tag-capteur d'humidité, basé sur l'utilisation de nano fils de silicium, est également présentée

    Contribution to the developement of time domain chipless tags and sensors

    No full text
    La RFID sans puce, en raison du très faible coût des tags, a ouvert une nouvelle voie pour les systèmes d'identification. Les étiquettes RFID sans puce fonctionnant dans le domaine temporel ont l'avantage d'être compatibles avec de grandes distances de lecture, de l'ordre de quelques mètres, et de pouvoir fonctionner dans les bandes de fréquence ISM. Cependant, les tags de ce type développés jusqu'à lors n'offraient qu'une faible capacité de codage. Cette thèse propose une nouvelle méthode pour augmenter la capacité de codage des tags fonctionnant dans le domaine temporel en utilisant des C-sections, c'est-à-dire des lignes de transmission repliées de manière à avoir des zones fortement couplées, ce qui leur donne un caractère dispersif. Une autre approche basée sur une technique multi-couches a également été introduite de façon à augmenter considérablement la capacité de codage. Pour terminer, la preuve de concept d'un tag-capteur d'humidité, basé sur l'utilisation de nano fils de silicium, est également présentée.Chipless RFID tags, owing to their low cost, have opened a new way to the identification systems. Chipless RFID tags operating in the time domain have the advantage of being compatible with large reading distances of the order of a few meters, and also can operate in the ISM frequency bands. However, time domain tags developed until now offer poor coding capacity. This thesis proposes a new method to increase the coding capacity of tags operating in time domain by using C-sections, i.e. the transmission lines are folded so as to have tightly coupled zones that give them a dispersive nature. Another approach based on a multi-layer technique was also introduced, in order to increase the coding capacity considerably. Finally, the proof of concept of a humidity sensor tag based on silicon nanowires is also presented

    Folded Multilayer C-Sections With Large Group Delay Swing for Passive Chipless RFID Applications

    No full text
    International audienceAn origami based multilayer structure suitable for passive chipless Radio Frequency Identification (RFID) applications is presented in this article. Contrary to the existing multilayer designs where metallic via is used for the interconnections, the proposed technique uses the folding of the structure designed in a flexible substrate. Thus, the multilayer structure is obtained from a thin printed circuit board that is folded to give the desired 3D structure. The proposed structure consists of cascaded commensurate transmission line sections (also known as C-sections) coupled at alternative ends. The group delay characteristic of the C-sections is utilized for encoding. Broad side coupling of the structure is exploited here, which enables large group delay with higher frequency selectivity. It is proved that to produce the same amount of delay, linearly cascaded C-sections demands five times more number of C-sections than that of a multilayered structure, which also signifies the factor of miniaturization of the proposed design. A coding capacity of 6 bits and 12 bits are estimated, respectively, for single and multi-group of multilayered C-sections in the allowed industrial, scientific and medical (ISM) bands. This shows for the first time that frequency domain chipless technology can be compatible with the use of ISM bands. It also allows a coding capacity of 43 bits in the ultra-wideband (UWB) band which is comparable with the EAN 13 barcode

    Folded Multilayer C-Sections With Large Group Delay Swing for Passive Chipless RFID Applications

    No full text

    Chipless RFID based on group delay encoding

    No full text
    International audienceA two bit planar chipless RFID tag based on group delay encoding has been presented in this paper. This chipless tag encodes data in the phase signature. The data encoding has been done by using C-sections formed by coupling the cascaded transmission line sections at alternative ends. The tag produces two different delays for two specific frequencies corresponding to the two different lengths of the transmission line sections. A measurable amount of delay has been obtained. The new approach has been validated with simulation results in frequency and temporal domain and with measurement results in frequency domain

    Novel encoding in chipless RFID using group delay characteristics

    No full text
    International audienceA novel encoding technique using group delay characteristics for chipless Radio Frequency Identification (RFID) tag is demonstrated in this paper. It uses phase-frequency signature along with a temporal analysis. This chipless tag comprises of cascaded transmission line sections coupled at alternative ends (which are also known as C-sections) along with a planar ultra wideband monopole antenna. The structural mode of the antenna is used as the reference signal. Commensurate C-section is used to generate the identification. A 2 bit coding is demonstrated as an example in this paper. The approach is validated with simulation results

    Design of Antennas for UHF RFID Tags

    No full text
    International audienceThis paper is mainly dedicated to the design of radio-frequency identification (RFID) tags, particularly the antennas that allow the tag to be fed, communicate, and exchange data with the reader. Good performance tags require optimized antenna that take into account numerous constraints as well as the environment of the application under consideration. Both conventional tags and robust tags are discussed. This paper also discusses how to transform a tag into an RFID sensor

    Group delay modulation for pulse position coding based on periodically coupled C-sections

    No full text
    ISI Document Solution: 188CEInternational audienceChipless radio frequency identification (RFID) is an emerging research area nowadays. The recent development in this area proves its efficiency to compete with low cost identification systems like barcodes in the upcoming years. Chipless RFID encodes data using different kinds of spectral signature produced from some planar images as in the case of barcodes, the difference here is those images are made with conductive materials. Among the different ways of information encoding, a powerful way of encoding is time domain approach. This paper incorporates a tag using group delay encoding. The proposed chipless tag is composed of commensurate cascaded transmission line sections coupled at alternative ends (also known as C-sections). It consists of single group of C-sections. However, in order to increase the coding capacity, the proposed tag can allow multi-frequencies also. In addition to this, the tag is also compatible with commercial ultra wide band radar. The proposed tag is validated experimentally. It exhibits a good reading range of 1.2 m. [References: 26

    A temporal multi-frequency encoding technique for chipless RFID based on c-sections

    No full text
    EMW Publishing, USA.International audienceA time domain chipless RFID tag based on cascaded microstrip coupled transmission line sections (C-sections), which can operate in multi-frequency bands is presented. The group delay characteristics of the C-sections are exploited to generate the tag Identification (ID). The tag comprises cascaded commensurate group of C-sections and two cross-polarized ultra wide-band (UWB) antennas. Since the proposed tag can operate in multi-frequency bands, this paper proves the possibility of increasing the coding capacity compared to the existing time domain designs. A tag operating at ISM (Industrial Scientific and Medical) bands at 2.45 GHz and 5.8 GHz together with conformance of frequency and power regulations is discussed elaborately. The prototype of the device is fabricated and validated experimentally. The time domain characteristic of the tag is also validated experimentally by interrogating a short pulse. Furthermore, measurement results using commercial Ultra Wide Band (UWB) radar which can be used as a chipless RFID reader is also incorporated. The obtained results confirm the concept and the possibility of using temporal multi-frequency in chipless RFID. (25 References)
    corecore